skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Zhiping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we theoretically study the switching and oscillation dynamics in strained non-collinear antiferromagnet (AFM) Mn3X (X = Sn, Ge, etc.). Using the perturbation theory, we identify three separable dynamic modes—one uniform and two optical modes, for which we analytically derive the oscillation frequencies and effective damping. We also establish a compact, vector equation for describing the dynamics of the uniform mode, which is in analogy to the conventional Landau–Lifshitz–Gilbert (LLG) equation for ferromagnet but captures the unique features of the cluster octuple moment. Extending our model to include spatial inhomogeneity, we are able to describe the excitations of dissipative spin wave and spin superfluidity state in the non-collinear AFM. Furthermore, we carry out numerical simulations based on coupled LLG equations to verify the analytical results, where good agreements are reached. Our treatment with the perturbative approach provides a systematic tool for studying the dynamics of non-collinear AFM and is generalizable to other magnetic systems in which the Hamiltonian can be expressed in a hierarchy of energy scales. 
    more » « less